Comparação dos resultados da audiometria tonal convencional e automatizada operada pelo usuário
Comparison of the results of conventional and user-operated automated pure-tone audiometry
Aline Borges; Suevellyn Souza do Nascimento; Ana Carolina Andrade Valadares; Luciana Macedo de Resende; Ludimila Labanca; Sirley Alves da Silva Carvalho
Resumo
Palavras-chave
Abstract
Purpose: to compare the auditory thresholds obtained in the conventional pure tone audiometry exam with the thresholds obtained in the user-operated automated pure tone audiometry.
Methods: 40 individuals of both genders, aged between 18 and 30 years old, divided into two groups participated in the study: 21 individuals with prior knowledge of how to perform audiometry - audiology undergraduates who have already taken courses in audiological assessment - (Group 1); 19 individuals without knowledge about audiometry (Group 2). The procedures involved anamnesis, inspection of the external acoustic meatus, performance of tonal audiometry airway, in the frequencies 0.25, 0.5, 1, 2, 3, 4, 6 and 8KHz, in conventional or automated form, in an acoustically treated environment, with an interval of 15 minutes between audiometries. Results were analyzed using descriptive statistics (mean, standard deviation, absolute mean difference, and percentage) and comparative analysis using the Wilcoxon test (p value <5).
Results: all the participants in the study had tonal thresholds within normal limits in audiometry. When considering the entire evaluated population, statistically significant differences were observed between the hearing thresholds obtained in the two audiometries (conventional and automated) at the frequencies of 1 KHz (p= 0,047) in the right ear and 0.25 (p= 0,001), 3 (p= 0,037) and 8 (p= 0,019) KHz in the left ear. The percentage of automated auditory thresholds that presented a maximum difference of ±5 dB from the conventional audiometry thresholds was 82.4% and 83% in the right and left ear, respectively. Comparing the means of the absolute differences of the auditory thresholds of the audiometry, a minimum and maximum value of 2.87dB of 5.75 dB, respectively were observed.
Conclusion: it is observed that the auditory thresholds automated by air conduction were similar to those of conventional audiometry (gold standard). New technologies are necessary, but the presence of audiologists in the diagnostic and therapeutic processes is essential.
Keywords
Referências
1 OPAS: Organização Pan-Americana da Saúde. Saúde Auditiva: documento de posicionamento da Organização Pan-Americana da Saúde/Organização Mundial da Saúde [Internet]. Brasília: OPAS/OMS; 2008 [citado em 2023 Mar 03]. Disponível em:
2 Kamenov K, Martinez R, Kunjumen T, Chadha S. Ear and hearing care workforce: current status and its implications. Ear Hear. 2021;42(2):249-57.
3 WHO: World Health Organization. World report on hearing: executive summary [Internet]. Geneva: WHO; 2021 [citado em 2023 Mar 03]. Disponível em:
4 WHO: World Health Organization. World report on hearing WHO [Internet]. Geneva: WHO; 2021 [citado em 2023 Mar 03]. Disponível em:
5 Margolis RH, Morgan DE. Automated pure-tone audiometry: an analysis of capacity, need, and benefit. Am J Audiol. 2008 Dez;17(2):109-13.
6 Shojaeemend H, Ayatollahi H. Automated audiometry: a review of the implementation and evaluation methods. Healthc Inform Res. 2018 Out;24(4):263-75.
7 Bean BN, Roberts RA, Picou EM, Angley GP, Edwards AJ. Automated audiometry in quiet and simulated exam room noise for listeners with normal hearing and impaired hearing. J Am Acad Audiol. 2022 Jan;33(1):6-13.
8 Eikelboom RH, Swanepoel DW, Motakef S, Upson GS. Clinical validation of the AMTAS automated audiometer. Int J Audiol. 2013;52(5):342-9.
9 Swanepoel DW, Mngemane S, Molemong S, Mkwanazi H, Tutshini S. Hearing assessment-reliability, accuracy, and efficiency of automated audiometry. Telemed J E Health. 2010;16(5):557-63.
10 Margolis RH, Glasberg BR, Creeke S, Moore BC. AMTAS: automated method for testing auditory sensitivity: validation studies. Int J Audiol. 2010;49(3):185-94.
11 Brennan-Jones C, Eikelboom R, Swanepoel DW, Friedland P, Atlas M. Clinical validation of automated audiometry with continuous noise-monitoring in a clinically heterogeneous population outside a sound-treated environment. Int J Audiol. 2016 Set 1;55(9):507-13.
12 Sahyeb DR, Costa Filho OA, Alvarenga KD. Audiometria de alta freqüência: estudo com indivíduos audiologicamente normais. Rev Bras Otorrinolaringol. 2003;69(1):93-9.
13 Barros SMS, Frota S, Atherino CCT, Osterne F. A eficiência das emissões otoacústicas transientes e audiometria tonal na detecção de mudanças temporárias nos limiares auditivos após exposição a níveis elevados de pressão sonora. Rev Bras Otorrinolaringol. 2007;73(5):592-8.
14 Mello LA, Silva RAM, Gil D. Variabilidade teste-reteste na audiometria tonal: comparação entre dois transdutores. Audiol Commun Res. 2015;20(3):239-45.
15 Gobbato LHFG, Costa EA, Sampaio MH, Gobbato FM Jr. Estudo do efeito aprendizagem em exames audiométricos sequenciais de trabalhadores de indústria metalúrgica e suas implicações nos programas de conservação auditiva. Rev Bras Otorrinolaringol. 2004;70(4):540-4.
16 Margolis RH, Killion MC, Bratt GW, Saly GL. Validation of the Home Hearing Test™. J Am Acad Audiol. 2016 Maio;27(5):416-20.
17 Brasil. Ministério do Trabalho e Previdência. Norma Regulamentadora n. 07 - Programa de Controle Médico de Saúde Ocupacional - PCMSO. Brasília: MTP; 2023.
18 Skjonsberg Å, Heggen C, Jamil M, Muhr P, Rosenhall U. Sensitivity and specificity of automated audiometry in subjects with normal hearing or hearing impairment. Noise Health. 2019;21(98):1-6.
Submetido em:
02/09/2024
Aceito em:
17/03/2025


